The GNSS - R Eddy Experiment I : Altimetry from Low Altitude Air - craft

نویسندگان

  • G. Ruffini
  • F. Soulat
  • M. Caparrini
چکیده

We report results from the Eddy Experiment, where a synchronous GPS receiver pair was flown on an aircraft to collect sampled L1 signals and their reflections from the sea surface to investigate the altimetric accuracy of GNSS-R. During the experiment, surface wind speed (U10) was of the order of 10 m/s, and significant wave heights of up to 2 m, as discussed further in a companion paper. After software tracking of the two signals through despreading of the GPS codes, a parametric waveform model containing the description of the sea surface conditions has been used to fit the waveforms (retracking) and estimate the temporal lapse between the direct GPS signals and their reflections. The estimated lapses have then been used to estimate the sea surface height (SSH) along the aircraft track using a differential geometric model. As expected, the precision of GNSS-R ranges was of 3 m after 1 second integration. More importantly, the accuracy of the GNSS-R altimetric solution with respect to Jason-1 SSH and in situ GPS buoy measurements was of 10 cm, which was the target with the used experimental setup. This new result confirms the potential of GNSS-R for mesoscale altimetric monitoring of the ocean, and provides an important milestone on the road to a space mission.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Eddy Experiment : accurate GNSS - R ocean altimetry from low altitude aircraft

During the Eddy Experiment, two synchronous GPS receivers were flown at 1 km altitude to collect L1 signals and their reflections from the sea surface for assessment of altimetric precision and accuracy. Wind speed (U10) was around 10 m/s, and SWH up to 2 m. A geophysical para-metric waveform model was used for retracking and estimation of the lapse between the direct and reflected signals with...

متن کامل

Sea Surface Altimetry Based on Airborne Gnss Signal Measurements

In this study the focus is on ocean surface altimetry using the signals transmitted from GNSS (Global Navigation Satellite System) satellites. A low-altitude airborne experiment was recently conducted off the coast of Sydney. Both a LiDAR experiment and a GNSS reflectometry (GNSS-R) experiment were carried out in the same aircraft, at the same time, in the presence of strong wind and rather hig...

متن کامل

Sea surface topography retrieved from GNSS reflectometry phase data of the GEOHALO flight mission

Sea surface topography observations are deduced from an airborne reflectometry experiment. A GNSS (Global Navigation Satellite System) receiver dedicated for reflectometry was set up aboard the German HALO (High Altitude Long Range) research aircraft. Flights were conducted over the Mediterranean Sea about 3500m above sea level. A signal path model divided into largeand small-scale contribution...

متن کامل

Simulation of space-borne tsunami detection using GNSS-Reflectometry applied to tsunamis in the Indian Ocean

Within the German-Indonesian Tsunami Early Warning System project GITEWS (Rudloff et al., 2009), a feasibility study on a future tsunami detection system from space has been carried out. The Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative way of using reflected GNSS signals for remote sensing, e.g. sea surface altimetry. In contrast to conventional satellite radar alt...

متن کامل

The Eddy Experiment: GNSS-R speculometry for directional sea-roughness retrieval from low altitude aircraft

We report on the retrieval of directional sea surface roughness, in terms of its full directional mean square slope (including direction and isotropy), from Global Navigation Satellite System Reflections (GNSS-R) Delay-Doppler-Map (DDM) data collected during an experimental flight at 1 km altitude. This study emphasizes the utilization of the entire DDM to more precisely infer ocean roughness d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003